
Mesa 2 version 2.2
File Format Documentation

Mesa 2 version 2.2 saves its information in tokenized workbook files.

File versions:
There are several versions of these files:

1) Mesa 2 version 2.0.x (Mesa2DPP)
2) Mesa 2 version 2.1.x (Mesa DPP)
3) Mesa 2 version 2.2 (Mesa JDK)
4) Mesa 2 version 2.2 compressed (Mesa CMP)

(minimal and maximal compression)

The purpose of this document is to describe the third format, the normal Mesa 2
version 2.2 uncompressed file. The other formats may be documented at a future
date.

To determine which type of file it is, you need to look at the first 8 bytes of the file. It
should be one of the 4 types listed above. For example, by default, Mesa 2 saves files
in 2.2 uncompressed format. The first 8 bytes of those files will be "Mesa JDK". (ASCII
text). Mesa 2 version 2.2 can also generate "Mesa DPP" and "Mesa CMP" files as
well as read all 4 types of files. It cannot generate "Mesa2DPP" files. If you have
people using a 2.0.x version of Mesa 2, we strongly advise they upgrade to version 2.2
(minimal cost) or at least to 2.1.6 (free upgrade).

Endian:
At this time, all numbers in all versions of Mesa 2 files are stored in the Intel "little
endian" notation. The high order bytes will appear AFTER the low order bytes.

Tokens:
After the 8 byte header, the file is just a bunch of tokens/records concatinated together
one right after another. Unlike many other spreadsheet formats, Mesa 2 uses very few
tokens. At this time, there are only 26 different tokens defined, and 6 of them are not
used at all in the "Mesa JDK" file format but are defined for compatibility with older
files. Most other spreadsheet file formats have many tokens, sometimes up to several
hundred. Mesa 2 is able to use fewer tokens by making it's tokens adaptible. The

data at the end of the token may depend on data found at the beginning of a token.
For example, in many spreadsheets, a cell that contains a formula would be written in
a different token than a cell that only contains a number. In Mesa 2, these both would
be stored in a "CELL" record and flags at the begining of the CELL would let the file
loader know that a formula needs to be loaded later in the cell record. Thus, very few
of the Mesa tokens have a fixed size or format.

Token header format:
Every token first starts out with a single byte depicting the token type. Following the
token type byte is a unsigned short (2 bytes) which give the length. However, if the
high order bit of the unsigned short is set, then the unsigned short is immediately
followed by another unsigned short. The lower 15 bits of the first unsigned short are
used for the upper 15 bits of a 31 bit int used to describe the length. This setup allows
the token header to be 3 bytes long for records under 32K in size and 5 bytes long for
tokens larger than 32K. Token larger than 2GB are not supported. The length
includes the 2/4 bytes for the length, but does not include the 1 byte for the token
identifier.

Some sample code for reading the token headers:

Note: Most of the sample code in this documentation will assume that you know
C/C++ and that there are a bunch of "utility" functions set up to handle common
operations. Most of these utiltity functions are fairly self explanatory. The above
example uses two utility functions: readUChar and readUShort which would read an
unsigned char (1 byte) and an unsigned short (2 bytes) from the file and return it.

An example token, the beginning of file record, containing 12 bytes of data would look
like:

The 01 signifies the beginning of file record. 000E signifies that the record, including
the 000E is 14 bytes long. 00000003 is the version number of the file. Mesa JDK files
and Mesa CMP files are version 3, Mesa DPP are version 2, and Mesa2DPP are
version 1. 0000014A (decimal 330) is the build number of Mesa that created this file.
This is important. The Mesa JDK file format was designed with adaptibility in mind.

Some tokens will change themselves by adding information onto the end of
themselves depeneding on the version. For example, the "Script" token in files before
build 228 will not have information about the keyboard shortcut for the script. Files
from builds after 228 will have that information.
00000352 is the codepage of the machine that created the file. These 4 bytes are only
written out for files created after build 312.

This brings up another important aspect about reading Mesa files: never assume that
this documentation is complete and describes ALL parts of a token. Later builds of
Mesa may add information onto the end of tokens. Thus, it is very important to use the
length part of the token header to determine where the next token is found. For
example:

This "dynamic" nature of Mesa files allows us to add information to the file while
retaining complete backwards and forwards compatibility. Older versions of Mesa 2
will simply ignore and skip over any information found after the parts that it knows
about. Newer versions of Mesa will check the build number in the BOF token and not
read in information that was not present in that build.

The Tokens:
As mentioned previously, there are 26 tokens defined for Mesa 2 files. They are as
follows:

Token Description Byte Value
BOF Beginning of file 1
EOF End of file 2

CELL A single cell *** 3
FORMAT A single format 4
LAYER21 An old (2.1) layer * 5
CLIPBRD Clipboard Information** 6
FONT A Single font 7
SCRIPT21 An old (2.1) script * 8
FRAME A graph or graphic 9
NUMFMT Local number format 10
LABELS Range labels 11
LAYER New (2.2 Layer) 12
RECALC Recalc behavior info 13
PRINTHD 2.1 print information * 14
POSITION Window postition 15
SCRIPT Script 16
DDEITEM A DDE item 17
PASSWD A password 18
ZOOM Zoom information * 19
BLOB A BLOB for AddIns 20
SIZE Cached size information 21
TXTSQR 2.0.4 Text square * 22
TABSET 2.1 tab information * 23
UNDO Undo/Redo levels 24
ROW Row of CELL records 25
PRINTINFO Printer information 26

Tokens marked with * are not found in 2.2 files but may be found in older versions of
Mesa files.
Tokens marked with ** are not found in any Mesa file, but are used for clipboard
operations.
Tokens marked with *** are not written by Mesa 2 into a 2.2 file. However, they may
be more convienient to use when writing an import filter. Mesa 2 will recognize and
load these tokens.

Required Tokens:
When creating a file, the only required tokens are the BOF and EOF tokens,

however, that is not a very useful file. If the file does not contain at least 1 layer,
format, or font token, Mesa will create a default one for each of them.

Note:
Due to a minor bug in Mesa 2.2, you need to do one of:
a) Write 2 font tokens, the first being "12.Helvetica", the second being

"14.Helvetica Bold"
b) Write at least one layer token. If you don't write any font tokens, make sure

the rulerfont is set to 0.
The bugs that cause these restictions will be fixed in a future update.

Data Types:
Other than ints (4 bytes), shorts (2 bytes), doubles (8 bytes), floats(4 bytes), chars (1
byte), there are a bunch of complex data types that may be found in the tokens.

BlockLen
Many tokens makes use of a "blocklen" type to record the size of the following data.
For lengths less than 32K, the blocklen structure is only 2 bytes. If it is larger than
32K, the blocklen is 4 bytes. When reading this structure, read a short first. If the hi
order bit is set, then read the second short and combine them.

When writing a blocklen token, you may always use the 4 byte type if you would like.
For example:

Address
An address is a data structure that describes a single address in the spreadsheet. It
contains a row (4 bytes), a column (2 bytes), and a layer (2 bytes). However, to
optimize storage requirements, it may be stored in a smaller format. If the highest bit
of the layer (bit 15) is set, the address is a "null" address or undefined address. This is
mostly used in ranges that have an upper left but no lower right.

Name Type Comment
flags char Flags describing the address

If flags is 0, the rest of the address is:
Name Type Comment
layer short The layer
column short The column

row int The row

If the high bit of flags is set:
Name Type Comment
column char The column
row short The row
The layer is stored in the lower 7 bits of flags. This format is used for cells where

the layer is <= to 127, the row is <= 65535, and the column is <= 255.

If the highest bit is not set and the second highest bit of flags is set:
Name Size Comment
column short The column
row short The row
The layer is stored in the lower 6 bits of flags. This format is used for cells where

the layer is <= to 63, the row is <= 65535, and the column is <= 65535.

A sample utility function for reading an address from a file would look something like:

When writing an address to a file, it is usually easiest to only use the full 9 byte format.
Just write 0 for the first byte, then the layer as a short, then the column as a short, and
then the row as an int. This foes make ther resulting file a bit larger, but it reduces the
complexity of determining how to write the address.

Range
A range is basically a collection of Addresses along with some extra flags.

Name Type Comment

count/flags int The count of ul/lr pairs (lower 16bits) and
extra flags (upper 16 bits)

0x10000 - autogrow
0x20000 - automove

Each pair of ul/lr address is defined as:
Name Type Comment
ul Address The upper left cell of the range
lr Address The lower right cell of the range

Selection
A selection represents all the items that are currently selected.

Name Type Comment
len blocklen The size of the data in this token
layer int The current layer
address Address The current base cell
upperleft Address The upperleft cell of the view
range Range The currently selected range
ngraphs int The number of selected graphs
graphnames String... The graph names (must have ngraphs number

of strings)
script String The name of the currently selected script
numsel int The number of embedded selections (for other layers)
embedsel Selection The embedded selections
splitul Address The upper left cell of the split (locked) area
splitlr Address The lower right edge of the split (locked) area
smin int The index into the script of the start of the selection
smax int The index into the script of the end of the selection
stop int The index into the script of the first character

Rect
This structure describes a rectangle used in various places in the UI.

Name Type Comment
x int The X coordinate
y int The Y coordinate
wid int The width
hi int The height

Color
A Color is an RGB representation of a color.

Name Type Comment
color int RGB color, high order byte is 0

String
A text string

Name Type Comment
len blocklen the length (including NULL) of the string
string varies the string itself

The len is encoded exactly like the length in the token headers using 2 bytes for
strings less than 32K in size and 4 bytes for longs strings. The len might be
0xFFFFFFFF in which case, the string is NULL. This is different than an empty string
whcih would have a len of 1.

Font
The font structure completely describes a font used on the display.

Name Type Comment
fontsize int The size of the font in points
len short The length of the font name
name varies The font name

Font attributes like Bold and Italic are encoded into the name. For example, a bold
Helvetica font would be recorded as "Helvetica Bold".

Ruler
The ruler structure defines the attributes for the rows or columns.

Name Type Comment
len blocklen the length of this data structure
size short the default size, in points

After the default size, the Ruler contains the information for each row or column in a
compressed form.

Name Type Comment
index int The row or column number is in lower 31 bits.
size short the size in points in lower 12 bits
format short the default format for the row/column (must be 0)

If index is 0xFFFFFFFF, then there are no more row/column record information and
size and format do not exist for that record. The size is defined as follows:

Name Mask Comment
points 0x0FFF The size in points
hidden 0x4000 The row/column is hidden
pgbreak 0x8000 The row/column is a page break.

If the high order bit of index is set, then the format bytes are immediately followed by:

Name Type Comment
count short The count of consecutive rows/columns that are

identically formatted to this one.

This is a space savings optimization. If you are creating a Mesa 2 file, you do not need
to compress identical rows/columns down into one token.

Image
An image structure is used to define all images in Mesa 2. Currently, there are only
two image types defined, Bitmap and OS/2 Metafile. Any token in the file that allows
an Image can take either a Bitmap or an OS/2 Metafile and properly display it.

Name Type Comment
type int The image type. Currently only 0 (Bitmap) and

1 (OS/2 Metafile) are used.
If the type is 1 (OS/2 Metafile), the rest of the token is:

Name Type Comment
len int The length of the metafile data
data varies The Metafile data

The data is the data returned from GpiQueryMetafileBits and can be used with
GpiSetMetaFileBits to set the bits for a new Metafile when loaded.

If the type is 0 (Bitmap), the rest of the token is:
Name Type Comment
headerlen int the length of the bitmap header
bitslen int the length of the bits
header varies the BITMAPINFOHEADER2 structure
bits varies the bits for the bitmap

The header and bits can directly be used in GpiCreateBitmap and GpiSetBitmapBits to
create a bitmap in memory.

PrintInfo
The PrintInfo data structure is the structure that stores all the information about the
print settings for the layer.

Name Type Comment
len blocklen the length of this data structure
headertl String the top left header
headertc String the top center header
headertr String the top right header
headerbl String the bottom left header
headerbc String the bottom center header
headerbr String the bottom right header

headerl String the left header
headerr String the right header
flags short print flags
scale short the print scale
marginleft short the left margin (points)
margintop short the top margin (points)
marginright short the right margin (points)
marginbtm short the bottom margin (points)

The flags item describes some of the options that can be set:
Name Mask Comment
grid 0x001 Print grid if set
rchead 0x002 Print row/column headers if set
order 0x004 Down then over if set
fitv 0x008 Fit to page vertically if set (ignores scale)
fith 0x010 Fit to page horizontally if set (ignores scale)
landscape 0x020 Print in landscape mode if set
centerh 0x040 Center horizonatally on page
centerv 0x080 Center vertically on page
notes 0x100 Print notes for this layer

Record descriptions:
As described before, every token/record begins with the token ID byte and the

2/4 bytes used to record the length of the token. The data in the tokens will be
describes in the next sections. Each part of the data will be given a name, a size (in
bytes) and a comment.

BOF
The beginning of file record marks the start of the data as well as provides

information about the source of the file. This should be the very first token in the file
found immediately after the 8 byte header.

Name Type Comment
version int File version (00000003 for 2.2 files)
build int Mesa 2 build number (document describes build 331)
codepage int Source codepage

The codepage part is only found in files created after build 312.

EOF
Marks the end of the file. Should be the last token in the file. This token

contains no data.

CELL
This token contains data that describes a single cell. It is not written out to a

Mesa 2.2 file. Instead, Mesa 2 uses the ROW token to describe an entire row of cells
at once. The ROW token is much more space efficient as it saves up to 7 bytes per
cell. In files with lots of cells, this can add up quickly. However, Mesa 2 will recognize
the CELL token in files and will load it. When writing a filter from one spreadsheet file
format to Mesa 2 format, it is usually more convenient to use the CELL token than the
ROW token.

Name Type Comment
address Address The cells address - see Address data type
flags short The flags describing the data in the cell
format short The index into the format palette

The rest of the CELL record varies depending on the value of flags.
Name Mask Comment
type 0x00F The value type for the cell
comment 0x010 The cell has a comment/attachment
hasrtf 0x020 The cell has a rtf formatting information
formula 0x040 The cell has a formula
numtype 0x180 The number type if type specifies a number

If the flags specify that the cell contains a formula, then the format index is immediately
followed by the RPN stream of bytes representing the formula. The format for the
RPN stream will be described later in this document.

Name Type Comment
size short The RPN length, including these 2 bytes
rpn varies The RPN data. Length of (size - 2)

The size is an unsigned short. That allows very complex formulas with the RPN size
up to 64K in size.

After the RPN stream (or after the format index if the cell does not have an RPN
stream) is where the current value of the cell is stored. The format for this depends on
the "type" field in the flags.

0 - Error Value Type
 Name Type Comment
 error short The error number

1 - String Value Type
 Name Type Comment

 string String The string

If the Flags for the cell indicate that there is RTF information available for the
string, that information immediately follows the string. This information is documented
later.

 Name Type Comment
 len blocklen The length of the RTF information
 rtf varies The rtf information

2 - Number Value Type
The number type uses the "numtype" bits in the flags to determine the type of

number that was saved. Mesa 2 tries to store a number in as few bytes as possible.
0 - the number is stored as a signed short (2 bytes)
1 - the number is stored as a signed int (4 bytes)
2 - the number is stored as an IEEE float (4 bytes)
3 - the number is stored as an IEEE double (8 bytes)

3 - Array Value Type
This will be documented at a later time.

After the current value, if the flags denote that this cell contains a comment or
attachment, the attachement is stored.

Name Type Comment
type int The type of the attachment
size int The length of the attachment
atttachment varies The attachment data

At this time, only attachment type 1 is defined and signifies a string. Other
types may be reserved for future use.

One note about the order of the CELL records: it's not important. Mesa 2 will write the
CELLS in the file in reverse order starting with the last cell in the file and going left/up.
This is to optimze file load times as none of the arrays will need to be expanded.
When creating a Mesa 2 file, write the CELL records in whatever order is easiest. The
only problem may be that it takes a tiny bit longer to load.

FORMAT
The FORMAT token describes all of the visual formatting information for a cell.
Name Type Comment
textcolor Color The Text color for the cell

bkgcolor Color The background color for the cell
patcolor Color The foreground color for the pattern
ltborder Color The color of the left border
rtborder Color The color of the right border
topborder Color The color of the top border
bmborder Color The color of the bottom border
font short The index into the font palette
numformat short The number format bit flags
info int The extra formatting information
pattern char The pattern for the cell
ltbordert char The left border type
rtbordert char The right border type
topbordert char The top border type
bmbordert char The bottom border type
underline char The underline style

If the numformat specifies an extended or custom number format, the underline is
immediately followed by:

Name Type Comment
extformat String The number format expressed as text

If the alignment is "SpanColumns", there is 1 more byte in the token:
Name Type Comment
spncols 1 The number of columns to span

The info field is a bunch of bits defined as:
Name Mask Comment
halignment 0x00007 The horizontal alignment

0 - generalAlignment
1 - leftAlignment
2 - rightAlignment
3 - centerAlignment
4 - spanColumnsAlignment

valignment 0x00018 The vertical alignment
0 - vertBottomAlignment
1 - vertTopAlignment
2 - vertCenterAlignment

hiddenzero 0x00020 Hide zero values
wrap 0x00040 Wrap the strings
protected 0x00080 The cell is protected
inputtype 0x00F00 The input type

0 - allInputType

1 - numbersInputType
2 - stringsInputType
3 - datesInputType
4 - formulasInputType

clearbkg 0x01000 The bkg is clear (don't use bkgcolor)
rednegative 0x02000 Display negative values in red
textdirection 0x1C000 The text direction
strikethrough 0x20000 Strikethrough size

The numformat field is a bunch of bits that describe the number formatting.
Name Mask Comment
extformat 0x8000 The number format is an extended format. The rest

of the numformat field is ignored
numtype 0x0E00 The formatting type

0 - unformatted
1 - decimal
2 - currency
3 - date/time

subtype 0x01C0 Unformatted:
0 - general format
1 - text format
2 - hidden format

Decimal:
0 - fixed
1 - scientific
2 - percent

Currency:
0 - currencysubtype
1 - comma

Date/time:
0 - date format
1 - time format

For currency types (currency and comma):
Name Mask Comment
selector 0x0030 The currency type selector

For decimal and currency types:
Name Mask Comment
decimals 0x000F The number of decimal places

For time formats:

Name Mask Comment
timeformat 0x003F The time format

0 - HMS12
1 - HM12
2 - HMS24
3 - HM24
4 - System/country defined time format

For date formats:
Name Mask Comment
dateformat 0x003F The date format

0 - MM/DD/YY
1 - MM/DD
2 - DD-MMM
3 - DD-MMM-YY
4 - MMM-YY
5 - YY/MM/DD
6 - DDMonYY
7 - MonDDYY
8 - DDMon
9 - MMDDYY
10 - MMDD
11 - DDMM
12 - DDMMYY
13 - MMM-DD-YY
14 - MMM-DD
15 - MMM DD, YYYY
16 - DDMMYYYY
17 - MMDDYYYY
18 - MMYYYY
19 - YYMMDD
20 - DD_MON_YYYY
21 - MON_DD_YYYY
22 - MON_YYYY
23 - DD_MM_YYYY
24 - MM_DD_YYYY
25 - DD_MM
26 - MM_DD
27 - MM_YYYY
28 - DD_MM_YY
29 - MM_DD_YY
30 - DD/MM/YYYY
31 - MM/DD/YYYY

32 - DD/MM
33 - MM/YYYY
34 - DD/MM/YY
35 - DD.MM.YYYY
36 - MM.DD.YYYY
37 - DD.MM
38 - MM.DD
39 - MM.YYYY
40 - DD.MM.YY
41 - MM.DD.YY
42 - DDxMMxYYYY
43 - MMxDDxYYYY
44 - DDxMM
45 - MMxDD
46 - MMxYYYY
47 - DDxMMxYY
48 - MMxDDxYY
49 - System defined date format
50 - YYxMMxDD
51 - YY.MM.DD
52 - YY_MM_DD

LAYER21
This token does not appear in 2.2 files and is thus not documented.

CLIPBRD
This token does not appear in 2.2 files and is thus not documented.

FONT
This record describes a single font. Font numbering is 0 based. When the file is

loaded, the first font found is given number 0, the second font is given number 1, etc...
Name Type Comment
fnt Font The font structure

SCRIPT21
This token does not appear in 2.2 files and is thus not documented.

FRAME
This token is not yet documented

NUMFMT
This token specifies the decimal separator, thousands separator, leading string,

and tailing string for the CURRENCY number formats (ser FORMAT token).
Name Type Comment
decsep0 int the decimal separator
thoussep0 int the thousands separator
leadstring0 String the leading string
tailstring0 String the tailing string
decsep1 int the decimal separator
thoussep1 int the thousands separator
leadstring1 String the leading string
tailstring1 String the tailing string
decsep2 int the decimal separator
thoussep2 int the thousands separator
leadstring2 String the leading string
tailstring2 String the tailing string
decsep3 int the decimal separator
thoussep3 int the thousands separator
leadstring3 String the leading string
tailstring3 String the tailing string

LABELS
This token defines all of the range labels.
Name Type Comment
numlabels int Number of defined labels

For each label that is defined:
Name Type Comment
name String Label name
rng Range the defined range

LAYER
This record describes all the information about a particular layer. Every layer

must have one of these in the file. If there is not a LAYER token in the file, Mesa 2 will
assume there is only one layer and will create a default one.

Name Type Comment
reserved char Reserved - must be 0
bkgColor Color The background color for the layer
rlrColor Color The color of the row/column titles
gridColor Color The colr of the gridlines
font short Index into the font palette for the font used in the

row/column headers
showgrid char 1 - grid is on, 0 - grid is off
name String the layer name
protection char 1 - the layer is protected, 0 - the layer is not protected

nrows int the number of rows displayed in the layer
ncols short the number of cols displayed in the layer
locklevel char reserved - must be 0
comment String The comment for the layer

The information beyond the comment varies.
Name Type Comment
hasPrintInfo char The layer has printer information set.
printinfo varies The printer information

If hasPrintInfo is 1, then printinfo exists and should be read in before going to the next
byte in the token. See the PrintInfo data structure. If hasPrintInfo is 0, printinfo does
not exist and the next byte in the token is:

Name Type Comment
hasBkgImg char The layer has an image
image Image The image

If hasBkgImg is 1, then image exists and must be read in before going on to the next
byte in the token. See the Image data structure.

The rest of the Layer token looks like:
Name Type Comment
colRuler Ruler The information about the columns
rowRulter Ruler The information about the rows
numTitles int Number of column titles defined
titles String... The titles

RECALC
This record describes how the recalc engine is to recalc this workbook.
Name Type Comment
order int Calc order (0 - row, 1 - column, 2 - natural,

3 - natural plus circular refs)
iterations int Number of iterations
autocalc int 1 if auto recalc is turned on, 0 if manual recalc
reserved int reserved for future use, should be 0

PRINTHD
This token does not appear in 2.2 files and is thus not documented.

POSITION
This record describes the window positions that are used when the file is

restored.

Name Type Comment
num char The number of windows into the file that are open
apprect Rect The rectangle of the application
currect Rect reserved

For each of the num windows, there is:
Name Type Comment
winRect Rect The window rectangle relative to apprect
tabfont Font The font used for the tabs
disptab char 1 if tabs are visible, 0 if not
zoom short The current zoom scaling
minmax char 1 if minimized, 2 if maximized, 0 if neither
sel Selection The selection for the window

SCRIPT
This token contains a REXX script.
Name Type Comment
name String The name of the scipt
script String The actual text of the script
info int Information bit flags
comment String The script comment
hasIcon char 1 if the icon is present. 0 if it isn't.
icon Image The icon for the toolbar. (Bitmap image only)
key int The keyboard shortcut
modifiers short The keyboard modifier flags

Note: the key and modifiers fields are only present in files created after build 328.

The info bits are defined as:
Name Mask Comment
onopen 0x01 Execute this script when file is opened
onclose 0x02 Execute this script when file is closed

The key and modifiers fields are undocumented.

DDEITEM
This token records the information required to reconnect to a DDE data server,

retreive the information, and place it in the proper location in the spreadsheet.
Name Type Comment
app String The name of the DDE server application
file String The name of the file
item String The item name
name String The name of this DDE item

selection Selection The selection into which to paste the DDE data
type short The link type

0 - Hot link
1 - Warm link
2 - Cold link

ack short The force acknowledge flag
format int The source data format

2 - Text (Tabular)
5 - Private (only if app is Mesa2)

PASSWD
For security reasons, this token is not documented.

ZOOM
This token does not appear in 2.2 files and is thus not documented.

BLOB
This token is only used by AddIns to store information that they need. BLOB

stands for binary length of bytes.

Name Type Comment
name String The name
size int The length of the BLOB data
blob varies The BLOB data

SIZE
This token is usually stored immediately after the BOF record. It is used to

record the size of some of the internal arrays. Having this record allows Mesa 2 to pre-
allocate some of the arrays, thus speeding up file loading.

Name Type Comment
numcells int Not used in 2.2
numformats int The number of defined formats
numfonts int The number of defined fonts
numlayers int The number of layers
numscripts int The number of scripts
numframes int The number of frames/graphics
numblobs int The number of blobs.

Note: These do not actually create the specified number of objects. They only make
sure the room for them exists. You still need to define the appropriate tokens.

TXTSQR
This token does not appear in 2.2 files and is thus not documented.

TABSET
This token does not appear in 2.2 files and is thus not documented.

UNDO
Stores the number of UNDO/REDO levels set for this workbook.
Name Type Comment
undo int Number of UNDO levels.

ROW
An optimized group of cell records. Mesa 2 version 2.2 uses this instead of

CELL records to save space in the file.
Name Type Comment
layer short The layer for all cells in this record
row int The row for all cells in this record

After the row is a bunch of cells as follows
Name Type Comment
column short The column number. If equal to 0xFFFF, there is no

more data following this.
len blocklen The length of the data for this cell.
celldata varies The cell data

The celldata is exactly like the information stored in the CELL record except that the
Address structure is not written out as it is not needed.

One note: the order of the cells in the record is not important. For file loading speed
optimizations, Mesa 2 writes the cells out in reverse order. In other words, the last
column in the row is written first, then the second to the last, etc.... Putting them in
sequence is allowed and will work. Also, Mesa 2 writes the last row on the layer first
and then the next to last, etc... This order is also not important, but the reverse order
allows the file to load a tiny bit faster.

PRINTINFO
This token stores the platform specific printer information used by the printer

drivers on that platform.
Name Type Comment
platform char The platform - currently, only 0 (OS/2) is defined
name String The name of the printer that was last used

to print the file
datalen int The length of the printer specific data

data varies The data

RPN Byte Stream
Mesa 2 stores formulas in a tokenized RPN (Reverse Polish Notation) form.

Each token in the RPN stream is 2 bytes, but many tokens are immediately followed by
additional bytes of information.For example, the "push addresss" token would
immediately be followed by the bytes of data needed to construct an Address
structure. Mesa 2.2 currently defines 540 tokens.

The majority of the tokens that are in the RPN stream refer to formula functions. They
are defined in the following table. For all functions, if the minimum number of
parameters does not equal the maximum number of parameters, the token is
immediately followed by another 2 bytes (a short) specifying the number of parameters
that the user typed for that formula. For example, the AVE part of the formula
AVE(num1,num2) would look like

19 00 02 00

A note about obsolete formulas: some formulas have changed since 2.0 shipped. For
example, the HLOOKUP function has an optional parameter added to it. Rather than
make a new version of the same token, a new token was added. Thus there are
multiple tokens for some formula functions. In these cases, the safest thing to use is
the LAST one in the table. The first entries are considered obsolete. While Mesa can
calculate with them, it is advised that you not use them.

Token Formula Name Min Params Max Params

3
4
10
12
17
20
24
25
26
27
28
29
30
31
32

SIN(
LENGTH(
NOT(
IF(
FEED(
SIGNAL(
ABS(
AVE(
COS(
COUNT(
EXP(
FRAC(
INT(
MAX(
MIN(

1
1
1
2
2
3
1
1
1
1
1
1
1
1
1

1
1
1
3
2
3
1
64
1
64
1
1
1
64
64

33
34
35
36
37
38
39
40
41
42
43
58
59
60
61
62
63
64
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

PROD(
RADTODEG(
ROOT(
ROUND(
SGN(
SQRT(
SUM(
CALCRATE(
@FV(
IRR(
NPV(
(
MOD(
@PMT(
@PV(
@RATE(
VALUE(
DEGTORAD(
@CTERM(
@TERM(
TAN(
@TAN(
VARP(
STDEVP(
STDDEVP(
NEXT(
@NEXT(
@@(
ADDRESS(
ISEMPTY(
ISFORMULA(
ISSTRING(
ISNUMBER(
ISARRAY(
ISNA(
ISERROR(
SAME(
@SAME(
AVERAGE(
AVG(
SUMSQ(
NUMBER(
@SIN(

1
1
2
2
1
1
1
3
3
1
2
1
2
3
3
3
1
1
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

64
1
2
2
1
1
64
3
3
2
64
1
2
3
3
3
1
1
3
3
1
1
64
64
64
1
1
3
3
1
1
1
1
1
1
1
1
1
64
64
64
1
1

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

@SUM(
@PROD(
@AVE(
@AVG(
@AVERAGE(
@COUNT(
@IF(
IFELSE(
@NOT(
@MAX(
@MIN(
@VAR(
STD(
@STD(
@STDEV(
@STDDEV(
@ABS(
@SUMSQ(
SIGN(
@SGN(
@SIGN(
@ROUND(
@INT(
@SQRT(
@MOD(
DIV(
@DIV(
LOG(
LOG10(
@LOG(
@EXP(
LN(
@LN(
@COS(
ASIN(
@ASIN(
ACOS(
@ACOS(
ATAN(
@ATAN(
ATAN2(
@ATAN2(
PV(

1
1
1
1
1
1
2
3
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3

64
64
64
64
64
64
3
3
1
64
64
64
64
64
64
64
1
64
1
1
1
2
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
5

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

@NPV(
FV(
PMT(
@VALUE(
@NUMBER(
EXACT(
@EXACT(
REPT(
REPEAT(
@REPT(
@REPEAT(
LEN(
@LENGTH(
@LEN(
@MID(
@MID(
ISERR(
@ISERROR(
@ISERR(
@ISNA(
ISREF(
@ISREF(
INDEX(
@INDEX(
@FRAC(
CHAR(
@CHAR(
CLEAN(
@CLEAN(
CODE(
@CODE(
LEFT(
@LEFT(
RIGHT(
@RIGHT(
UPPER(
@UPPER(
LOWER(
@LOWER(
PROPER(
@PROPER(
FIND(
@FIND(

2
3
3
1
1
2
2
2
2
2
2
1
1
1
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
2
2

64
5
5
1
1
2
2
2
2
2
2
1
1
1
3
3
1
1
1
1
1
1
4
4
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
3
3

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

@ISSTRING(
REGRESS(
@REGRESS(
@STRING(
FIXED(
@ISNUMBER(
ISTEXT(
@N(
N(
@S(
S(
DOLLAR(
@CHOOSE(
@CHOOSE(
@HLOOKUP(
@HLOOKUP(
@VLOOKUP(
@VLOOKUP(
TRIM(
@TRIM(
SYD(
@SYD(
SLN(
@SLN(
DDB(
@DDB(
@ROOT(
GETINPUT(
@GETINPUT(
@REPLACE(
@REPLACE(
@IRR(
@SIGNAL(
@ISEMPTY(
@ISFORMULA(
@RADTODEG(
@DEGTORAD(
@ADDRESS(
@CALCRATE(
CTERM(
ISTRING(
@ISTRING(
DATE(

1
2
2
1
1
1
1
1
1
1
1
1
2
2
3
3
3
3
1
1
4
4
3
3
4
4
2
1
1
4
4
2
3
1
1
1
1
1
3
3
1
1
3

1
2
2
2
2
1
1
1
1
1
1
2
64
64
3
3
3
3
1
1
4
4
3
3
5
5
2
1
1
4
4
64
3
1
1
1
1
3
3
3
1
1
6

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
242
243
244
245
246
247
279
280
281
282
283
284
285
287
288
289
290
291
292
295
296
297
302
303
306
307
308
309

@DATE(
TIME(
@TIME(
YEAR(
@YEAR(
MONTH(
@MONTH(
DAY(
@DAY(
HOUR(
@HOUR(
MINUTE(
@MINUTE(
SECOND(
@SECOND(
INVERT(
@INVERT(
TRANSPOSE(
@TRANSPOSE(
MULT(
@MULT(
ELEMENT(
@ELEMENT(
LASTROW(
@LASTROW(
LASTCOL(
@LASTCOL(
@DOLLAR(
@FEED(
STRING(
@FIXED(
@IFELSE(
@ISARRAY(
@ISTEXT(
TERM(
RATE(
NPER(
SINH(
@SINH(
STDDEV(
@STDS(
STDEV(
SUMPRODUCT(

3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
3
1
1
1
1
1
2
1
1
3
1
1
3
3
3
1
1
1
1
1
1

6
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
3
3
1
1
1
1
2
2
2
2
3
1
1
3
6
5
1
1
64
64
64
64

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

@SUMPRODUCT(
VAR(
@VARS(
RUNSCRIPT(
@RUNSCRIPT(
DATEVALUE(
@DATEVALUE(
TIMEVALUE(
@TIMEVALUE(
ISBLANK(
MINVERSE(
MMULT(
DEGREES(
PRODUCT(
RADIANS(
TEXT(
@ISRANGE(
@ISNAME(
ISRANGE(
ISNAME(
@CELL(
CELL(
@CELLPOINTER(
CELLPOINTER(
@ROWS(
ROWS(
@COLS(
COLS(
@SHEETS(
SHEETS(
@COORD(
COORD(
@ISLABEL(
ISLABEL(
LAYERS(
@LAYERS(
@TEXT(
@DEGREES(
@RADIANS(
@MMULT(
@MINVERSE(
@ISBLANK(
DSUM(

1
1
1
2
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
2
1
1
1
1
1
1
1
2
1
1
3

64
64
64
2
2
1
1
1
1
1
1
2
1
64
1
2
1
1
1
1
2
2
1
1
1
1
1
1
1
1
4
4
1
1
1
1
2
1
1
2
1
1
3

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
416
417
418
419
420
421
424
425
426
429
430
431
432

@DSUM(
DAVERAGE(
@DAVERAGE(
DAVE(
@DAVE(
DAVG(
@DAVG(
DCOUNT(
@DCOUNT(
DMAX(
@DMAX(
DMIN(
@DMIN(
DSTDEV(
@DSTDEVS(
DSTDEVP(
@DSTD(
DPROD(
@DPROD(
DSUMSQ(
@DSUMSQ(
DVAR(
@DVARS(
DVARP(
@DVAR(
DPRODUCT(
@DPRODUCT(
@DSTDS(
DSTDDEV(
DSTDDEVP(
AND(
@AND(
OR(
@OR(
WEEKDAY(
@WEEKDAY(
VLOOKUP(
HLOOKUP(
CHOOSE(
TRUNC(
@TRUNC(
FLOOR(
@FLOOR(

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
3
3
2
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
64
64
64
64
2
2
3
3
64
2
2
2
2

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

CEILING(
@CEILING(
MROUND(
@MROUND(
ROUNDUP(
@ROUNDUP(
ROUNDDOWN(
@ROUNDDOWN(
EVEN(
@EVEN(
ODD(
@ODD(
COSH(
@COSH(
TANH(
@TANH(
ACOSH(
@ACOSH(
ATANH(
@ATANH(
ASINH(
@ASINH(
VLOOKUP(
@VLOOKUP(
HLOOKUP(
@HLOOKUP(
RUNSCRIPT(
@RUNSCRIPT(
DDELINK(
@DDELINK(
LINEST(
@LINEST(
CORREL(
@CORREL(
INTERCEPT(
@INTERCEPT(
RSQ(
@RSQ(
PEARSON(
@PEARSON(
SLOPE(
@SLOPE(
STEYX(

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
2
2
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
4
4
4
64
64
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
495
496
497
498
500
501
502
503
504
506
508
509
510
511
512
513
514
515
516
517
518
519
520
521
523

@STEYX(
TREND(
@TREND(
MEDIAN(
@MEDIAN(
DEVSQ(
@DEVSQ(
AVEDEV(
@AVEDEV(
REGRESS(
@REGRESS(
SMARTRANGE(
@SMARTRANGE(
SMARTRNG(
@SMARTRNG(
FREQUENCY(
COUNTIF(
SUMIF(
ROW(
COLUMN(
INDIRECT(
PERCENTILE(
COUNTBLANK(
SUBTOTAL(
COUNTA(
GAMMA(
BESSELY(
BESSELJ(
ERF(
ERFC(
GAMMALN(
FINDCELL(
@FINDCELL(
MID(
LEFT(
@LEFT(
RIGHT(
@RIGHT(
REPLACE(
@FREQUENCY(
@COUNTIF(
@SUMIF(
@ROW(

2
1
1
1
1
1
1
1
1
2
2
0
0
0
0
2
2
2
0
0
1
2
1
2
1
1
2
2
1
1
1
2
2
3
1
1
1
1
4
2
2
2
0

2
4
4
64
64
64
64
64
64
4
4
2
2
2
2
2
2
3
1
1
2
2
1
2
64
1
2
2
2
1
1
7
7
3
2
2
2
2
4
2
2
3
1

524
525
526
528
529
530
531
532
534
536
537
538
539
540

@COLUMN(
@INDIRECT(
@PERCENTILE(
@COUNTBLANK(
@SUBTOTAL(
@COUNTA(
@GAMMA(
@BESSELY(
@BESSELJ(
@ERF(
@ERFC(
@GAMMALN(
GRANDTOTAL(
@GRANDTOTAL(

0
1
2
1
1
1
1
2
2
1
1
1
1
1

1
2
2
1
64
64
1
2
2
2
1
1
64
64

Another common type of token are the binary operators. These are the operators,
such as + and -, that display with one parameter on the left and another on the right.
The list of operators include:

Token Operator

1
2
5
19
21
22
23
44
45
46
47
48
49
50
51
52
53
54
55
56
57
286

+
-
&
*
>
<
/
=
!=
<=
>=
^
&&
#AND#
<AND>
||
#OR#
<OR>
^^
#XOR#
<XOR>
<>

299
300
301
383
384

\\=
\\>
\\<
=>
=<

There are only 3 binary operators. Binary operators only take 1 parameter and act
upon that.

Token Operator

9
11
65

-
+
#NOT#

Another common token type are constants. Constants are functions that do not take
any parameters. They just return a set value or a value that does not depend on any
extra parameters.

Token Operator

6
7
8
236
237
238
239
240
241
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

RAND
RAND()
UNAME
NOW
@NOW
NOW()
@NOW()
TODAY
@TODAY
RANDOM
@RANDOM
RANDOM()
@RANDOM()
PI
TRUE
FALSE
@PI
@TRUE
@FALSE
PI()
TRUE()
FALSE()
@PI()
@TRUE()

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
293
294
298
422
423
427
428

@FALSE()
FILENAME
PATHNAME
THISROW
THISCOL
THISLAYER
THISADDRESS
CURRENTVALUE
@FILENAME
@PATHNAME
@THISROW
@THISCOL
@THISLAYER
@CURRENTVALUE
@THISADDRESS
@RAND
@RAND()
@UNAME
TODAY()
@TODAY()
NA()
@NA()

Almost all of the remaining tokens involve pushing standard value types onto the stack.
These include things like numbers, addresses, ranges, strings, etc....

Token Description
0 Push a IEEE 8 byte double precision number onto the stack. The token

is immediately followed by the 8 bytes used to create the number.

13 Push a string onto the stack. The token is immediately followed by the
null terminated string. If the string len (including the null) is not evenly
divisible by 2, then an extra null is added.

16 Pushes an array onto the stack. (not yet documented)

248 Pushes an error value onto the stack. The token is immediately followed
by a short depicting the error number.

305 Pushes a named range (labeled range) onto the stack. The token is
followed by an unsigned short which is reserved for internal use and then
the string. (see token 13)

385 Pushes a 4 byte signed integer onto the stack. The token is immediately
followed by the 4 bytes.

386 Pushes a 2 byte signed short onto the stack. The token is immediately
followed by the 2 bytes.

390 Pushes a IEEE 4 byte single precision float onto the stack. The token is
immediately followed by the 4 bytes.

Mesa has several different formats for saving Addresses in the RPN stream.
Originally, Mesa only had 1 format which was 8 bytes of additional data. In 2.1,
Several smaller forms were added to save space which results in smaller files as well
as less memory overhead. When creating a Mesa file, feel free to use only the full
address token. The only penalty will be larger files and a larger memory requirement.

18 Full address: The token is followed by an signed short for the layer, a
signed short for the column, and a signed int for the row. The upper 4
bits of the layer contains the flags for which sections of the address are
absolute. The 11th bit is then copied into the upper 4 bits to extend the
sign of the layer. (Remember, relative addresses can be negative)

Bit 14 - if set, the layer is absolute, not relative
Bit 13 - if set, the column is absolute, not relative
Bit 12 - if set, the row is absolute, not relative

387 Short Relative Address: This is used for addresses where all three parts
are relative, the layer is between -127 and 127, the column is between
-127 and 127, and the row is between -32767 and 32767. In this case,
the token is followed by two signed chars and then a signed short. The
first signed char is the layer and the second is the column. The signed
short is the row.

388 Short Absolute Address: This is used for addresses where all three parts
are absolute, the layer is less than 256, the column is less than 256, and
the row is less than 65536. The token is followed by an unsigned short
(the row), an unsigned char (the column), and another unsinged char (the
layer).

389 Very Small Address: This is used for addresses where all three parts are

relative, the layer is 0, and both the row and column are between -127
and 127. In this case, the token is followed by two signed chars. The
first is the row and the second is the column.

391 Mixed Small Address: This is used for addresses where the row and
column are both absolute but the layer isn't. Also, the layer between -
127 and 127, the column is less than 256, and the row is less than
65536. In this case, the token is followed by an unsigned short (the row),
an unsigned char (the column), and a signed char (the layer).

Like Addresses, Ranges were originally written in only one, large format. In 2.1, this
was changed to create many different range tokens. The data for each range token is
exactly the same. After the token, there are two addresses that define the upperleft
and the lower right of the range. The only difference between the two tokens is the
type of address that is written in each spot.

66 Full range - is followed by 2 Full Addresses
392 VSVS Range - is followed by two Very Small Addresses
393 VSSRel Range - is followed by a Very Small Address and then a Small

Relative Address
394 VSSAbs Range - is followed by a Very Small Address and then a Small

Absolute Address
395 VSRA Range - is followed by a Very Small Address and then a Mixed

Small Address
396 SRelVS Range- is followed by a Small Relative Address and then a Very

Small Absolute Address
397 SRelSRel Range - is followed by a Small Relative Address and then a

Small Relative Address
398 SRelSAbs Range - is followed by a Small Relative Address and then a

Small Absolute Address
399 SRelRA Range - is followed by a Small Relative Address and then a

Mixed Small Address
400 SAbsVS Range - is followed by a Small Absolute Address and then a

Very Small Address
401 SAbsSRel Range - is followed by a Small Absolute Address and then a

Small Relative Address
402 SAbsSAbs Range - is followed by a Small Absolute Address and then a

Small Absolute Address
403 SAbsRA Range - is followed by a Small Absolute Address and then a

Mixed Small Address
404 RAVS Range - is followed by a Mixed Small Address and then a Very

Small Address
405 RASRel Range - is followed by a Mixed Small Address and then a Small

Relative Address
406 RASAbs Range - is followed by a Mixed Small Address and then a Small

Absolute Address
407 RARA Range - is followed by a Mixed Small Address and then a Mxed

Small Address
408 NormVS Range - is followed by a Full Address and then a Very Small

Address
409 NormSRel Range - is followed by a Full Address and then a Small

Relative Address
410 NormSAbs Range - is followed by a Full Address and then a Small

Absolute Address
411 NormRA Range - is followed by a Full Address and then a Mixed Small

Address
412 VSNorm Range - is followed by a Very Small Address and then a Full

Address
413 SRelNorm Range - is followed by a Small Relative Address and then a

Full Address
414 SAbsNorm Range - is followed by a Small Absolute Address and then a

Full Address
415 RANorm Range - is followed by a Mixed Small Address and then a Full

Address

Finally, there are a few "special" tokens:
14 Old End - 2.0.x versions of Mesa used this token to denote the end of the

RPN stream. 2.1 and higher just use the length of the stream to
determine when the end is met.

304 AddIn Function - This is used for functions that are not recognized
internally by Mesa. It is followed by two unsigned shorts. The first is the
number of parameters. The second is used interally for caching. After
the unsigned shorts is a NULL terminated name of the function. As with
the string token, if the length of the name (including null) is not evenly
divisible by 2, then an extra null is added.

